skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ke, Wen-Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The primary mechanism driving plant species loss after nitrogen (N) addition has been often hypothesized to be asymmetric competition for light, resulting from increased aboveground biomass. However, it is largely unknown whether plants’ access to soil water at different depths would affect their responses, fate, and community composition under nitrogen addition. In a semiarid grassland exposed to 8-years of N addition, we measured plant aboveground biomass and diversity under four nitrogen addition rates (0, 4, 10, and 16 g m 2 year 1), and evaluated plant use of water across the soil profile using oxygen isotope. Aboveground biomass increased significantly, but diversity and shallow soil-water content decreased, with increasing rate of nitrogen addition. The water isotopic signature for both plant and soil water at the high N rate indicated that Leymus secalinus (a perennial grass) absorbed 7% more water from the subsurface soil layer (20e100 cm) compared to Elymus dahuricus (a perennial grass) and Artemisia annua (an annual forb). L. secalinus thus had a significantly larger biomass and was more abundant than the other two species at the high N rate but did not differ significantly from the other two species under ambient and the low N rate. Species that could use water from deeper soil layers became dominant when water in the shallow layers was insufficient to meet the demands of increased aboveground plant biomass. Our study highlights the importance of water across soil depths as key driver of plant growth and dominance in grasslands under N addition. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026